Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22.503
Filtrar
1.
J Neurosci ; 44(5)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-37989593

RESUMO

Scientists have long conjectured that the neocortex learns patterns in sensory data to generate top-down predictions of upcoming stimuli. In line with this conjecture, different responses to pattern-matching vs pattern-violating visual stimuli have been observed in both spiking and somatic calcium imaging data. However, it remains unknown whether these pattern-violation signals are different between the distal apical dendrites, which are heavily targeted by top-down signals, and the somata, where bottom-up information is primarily integrated. Furthermore, it is unknown how responses to pattern-violating stimuli evolve over time as an animal gains more experience with them. Here, we address these unanswered questions by analyzing responses of individual somata and dendritic branches of layer 2/3 and layer 5 pyramidal neurons tracked over multiple days in primary visual cortex of awake, behaving female and male mice. We use sequences of Gabor patches with patterns in their orientations to create pattern-matching and pattern-violating stimuli, and two-photon calcium imaging to record neuronal responses. Many neurons in both layers show large differences between their responses to pattern-matching and pattern-violating stimuli. Interestingly, these responses evolve in opposite directions in the somata and distal apical dendrites, with somata becoming less sensitive to pattern-violating stimuli and distal apical dendrites more sensitive. These differences between the somata and distal apical dendrites may be important for hierarchical computation of sensory predictions and learning, since these two compartments tend to receive bottom-up and top-down information, respectively.


Assuntos
Cálcio , Neocórtex , Masculino , Feminino , Camundongos , Animais , Cálcio/fisiologia , Neurônios/fisiologia , Dendritos/fisiologia , Células Piramidais/fisiologia , Neocórtex/fisiologia
2.
Neurobiol Dis ; 187: 106318, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37802154

RESUMO

Spinocerebellar ataxia type 1 (SCA1) is a neurodegenerative disease caused by an abnormal expansion of glutamine (Q) encoding CAG repeats in the ATAXIN1 (ATXN1) gene and characterized by progressive cerebellar ataxia, dysarthria, and eventual deterioration of bulbar functions. SCA1 shows severe degeneration of cerebellar Purkinje cells (PCs) and activation of Bergmann glia (BG), a type of cerebellar astroglia closely associated with PCs. Combining electrophysiological recordings, calcium imaging techniques, and chemogenetic approaches, we have investigated the electrical intrinsic and synaptic properties of PCs and the physiological properties of BG in SCA1 mouse model expressing mutant ATXN1 only in PCs. PCs of SCA1 mice displayed lower spontaneous firing rate and larger slow afterhyperpolarization currents (sIAHP) than wildtype mice, whereas the properties of the synaptic inputs were unaffected. BG of SCA1 mice showed higher calcium hyperactivity and gliotransmission, manifested by higher frequency of NMDAR-mediated slow inward currents (SICs) in PC. Preventing the BG calcium hyperexcitability of SCA1 mice by loading BG with the calcium chelator BAPTA restored sIAHP and spontaneous firing rate of PCs to similar levels of wildtype mice. Moreover, mimicking the BG hyperactivity by activating BG expressing Gq-DREADDs in wildtype mice reproduced the SCA1 pathological phenotype of PCs, i.e., enhancement of sIAHP and decrease of spontaneous firing rate. These results indicate that the intrinsic electrical properties of PCs, but not their synaptic properties, were altered in SCA1 mice and that these alterations were associated with the hyperexcitability of BG. Moreover, preventing BG hyperexcitability in SCA1 mice and promoting BG hyperexcitability in wildtype mice prevented and mimicked, respectively, the pathological electrophysiological phenotype of PCs. Therefore, BG plays a relevant role in the dysfunction of the electrical intrinsic properties of PCs in SCA1 mice, suggesting that they may serve as potential targets for therapeutic approaches to treat the spinocerebellar ataxia type 1.


Assuntos
Cálcio , Ataxias Espinocerebelares , Camundongos , Animais , Cálcio/fisiologia , Sinalização do Cálcio , Camundongos Transgênicos , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/patologia , Cerebelo/patologia , Células de Purkinje/patologia , Neuroglia/patologia , Ataxina-1/genética
3.
Circ Res ; 133(5): 430-443, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37470183

RESUMO

BACKGROUND: Modulating myosin function is a novel therapeutic approach in patients with cardiomyopathy. Danicamtiv is a novel myosin activator with promising preclinical data that is currently in clinical trials. While it is known that danicamtiv increases force and cardiomyocyte contractility without affecting calcium levels, detailed mechanistic studies regarding its mode of action are lacking. METHODS: Permeabilized porcine cardiac tissue and myofibrils were used for X-ray diffraction and mechanical measurements. A mouse model of genetic dilated cardiomyopathy was used to evaluate the ability of danicamtiv to correct the contractile deficit. RESULTS: Danicamtiv increased force and calcium sensitivity via increasing the number of myosins in the ON state and slowing cross-bridge turnover. Our detailed analysis showed that inhibition of ADP release results in decreased cross-bridge turnover with cross bridges staying attached longer and prolonging myofibril relaxation. Danicamtiv corrected decreased calcium sensitivity in demembranated tissue, abnormal twitch magnitude and kinetics in intact cardiac tissue, and reduced ejection fraction in the whole organ. CONCLUSIONS: As demonstrated by the detailed studies of Danicamtiv, increasing myosin recruitment and altering cross-bridge cycling are 2 mechanisms to increase force and calcium sensitivity in cardiac muscle. Myosin activators such as Danicamtiv can treat the causative hypocontractile phenotype in genetic dilated cardiomyopathy.


Assuntos
Cardiomiopatia Dilatada , Camundongos , Animais , Suínos , Cardiomiopatia Dilatada/tratamento farmacológico , Cálcio/fisiologia , Miocárdio , Miosinas , Miócitos Cardíacos , Cardiotônicos
4.
Science ; 380(6646): 758-764, 2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37200435

RESUMO

Zebrafish hearts can regenerate by replacing damaged tissue with new cardiomyocytes. Although the steps leading up to the proliferation of surviving cardiomyocytes have been extensively studied, little is known about the mechanisms that control proliferation and redifferentiation to a mature state. We found that the cardiac dyad, a structure that regulates calcium handling and excitation-contraction coupling, played a key role in the redifferentiation process. A component of the cardiac dyad called leucine-rich repeat-containing 10 (Lrrc10) acted as a negative regulator of proliferation, prevented cardiomegaly, and induced redifferentiation. We found that its function was conserved in mammalian cardiomyocytes. This study highlights the importance of the underlying mechanisms required for heart regeneration and their application to the generation of fully functional cardiomyocytes.


Assuntos
Cálcio , Coração , Miócitos Cardíacos , Regeneração , Sarcômeros , Peixe-Zebra , Animais , Cálcio/fisiologia , Proliferação de Células , Coração/fisiologia , Miócitos Cardíacos/fisiologia , Sarcômeros/fisiologia , Peixe-Zebra/fisiologia
5.
Sci Rep ; 12(1): 17736, 2022 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-36273090

RESUMO

In vivo imaging has been widely used for investigating the structure and function of neurons typically located within ~ 800 µm below the cortical surface. Due to light scattering and absorption, it has been difficult to perform in-vivo imaging of neurons in deep cortical and subcortical regions of large animals with two-photon microscopy. Here, we combined a thin-wall quartz capillary with a GRIN lens attached to a prism for large-volume structural and calcium imaging of neurons located 2 mm below the surface of rabbit and monkey brains. The field of view was greatly expanded by rotating and changing the depth of the imaging probe inside a quartz capillary. Calcium imaging of layer 5/6 neurons in the rabbit motor cortex revealed differential activity of these neurons between quiet wakefulness and slow wave sleep. The method described here provides an important tool for studying the structure and function of neurons located deep in the brains of large animals.


Assuntos
Cálcio , Microscopia , Animais , Coelhos , Cálcio/fisiologia , Haplorrinos , Quartzo , Encéfalo/diagnóstico por imagem , Neuroimagem/métodos
6.
PLoS One ; 17(8): e0273677, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36044480

RESUMO

Hypothermia (HT) is a standard of care in the management of hypoxic-ischemic brain injury (HI). However, therapeutic mechanisms of HT are not well understood. We found that at the temperature of 32°C, isolated brain mitochondria exhibited significantly greater resistance to an opening of calcium-induced permeability transition pore (mPTP), compared to 37°C. Mitochondrial calcium buffering capacity (mCBC) was linearly and inversely dependent upon temperature (25°C-37°C). Importantly, at 37°C cyclosporine A did not increase mCBC, but significantly increased mCBC at lower temperature. Because mPTP contributes to reperfusion injury, we hypothesized that HT protects brain by improvement of mitochondrial tolerance to mPTP activation. Immediately after HI-insult, isolated brain mitochondria demonstrated very poor mCBC. At 30 minutes of reperfusion, in mice recovered under normothermia (NT) or HT, mCBC significantly improved. However, at four hours of reperfusion, only NT mice exhibited secondary decline of mCBC. HT-mice maintained their recovered mCBC and this was associated with significant neuroprotection. Direct inverted dependence of mCBC upon temperature in vitro and significantly increased mitochondrial resistance to mPTP activation after therapeutic HT ex vivo suggest that hypothermia-driven inhibition of calcium-induced mitochondrial mPTP activation mechanistically contributes to the neuroprotection associated with hypothermia.


Assuntos
Cálcio , Hipotermia , Hipóxia-Isquemia Encefálica , Mitocôndrias , Animais , Cálcio/metabolismo , Cálcio/fisiologia , Hipóxia , Hipóxia-Isquemia Encefálica/metabolismo , Isquemia , Camundongos , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial , Neuroproteção , Temperatura
7.
Sci Data ; 9(1): 135, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35361792

RESUMO

Optical mapping of animal models is a widely used technique in pre-clinical cardiac research. It has several advantages over other methods, including higher spatial resolution, contactless recording and direct visualisation of action potentials and calcium transients. Optical mapping enables simultaneous study of action potential and calcium transient morphology, conduction dynamics, regional heterogeneity, restitution and arrhythmogenesis. In this dataset, we have optically mapped Langendorff perfused isolated whole hearts (mouse and guinea pig) and superfused isolated atria (mouse). Raw datasets (consisting of over 400 files) can be combined with open-source software for processing and analysis. We have generated a comprehensive post-processed dataset characterising the baseline cardiac electrophysiology in these widely used pre-clinical models. This dataset also provides reference information detailing the effect of heart rate, clinically used anti-arrhythmic drugs, ischaemia-reperfusion and sympathetic nervous stimulation on cardiac electrophysiology. The effects of these interventions can be studied in a global or regional manner, enabling new insights into the prevention and initiation of arrhythmia.


Assuntos
Potenciais de Ação , Cálcio , Técnicas Eletrofisiológicas Cardíacas , Potenciais de Ação/fisiologia , Animais , Arritmias Cardíacas/diagnóstico por imagem , Arritmias Cardíacas/fisiopatologia , Cálcio/fisiologia , Frequência Cardíaca , Modelos Animais
8.
Am J Hum Biol ; 34(8): e23756, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35481615

RESUMO

OBJECTIVES: Ethnic groups differ in prevalence of calcium-related diseases. Differences in the physiology and the endogenous circadian rhythm (CR) of calcium and bone homeostasis may play a role. Thus, we aimed to investigate details of CR pattern in calcium and bone homeostasis in East African Maasai. METHODS: Ten clinically healthy adult Maasai men and women from Tanzania were examined. Blood samples were collected every 2nd hour for 24 h. Serum levels of total calcium, albumin, parathyroid hormone (PTH), 25(OH)D, creatinine, C-terminal telopeptide (CTX), bone-specific alkaline phosphatase (BSAP), procollagen type 1 N-terminal propeptide (P1NP), and osteocalcin were measured. Circadian patterns were derived from graphic curves of medians, and rhythmicity was assessed with Fourier analysis. RESULTS: PTH-levels varied over the 24 h exhibiting a bimodal pattern. Nadir level corresponded to 65% of total 24-h mean. CTX and P1NP showed 24-h variations with a morning nadir and nocturnal peak with nadir levels corresponding to 23% and 79% of the 24-h mean, respectively. Albumin-corrected calcium level was held in a narrow range and alterations were corresponding to alterations in PTH. There was no distinct pattern in 24-h variations of 25(OH)D, creatinine, osteocalcin, or BSAP. CONCLUSIONS: All participants showed pronounced 24-h variations in PTH and bone turnover markers CTX and P1NP. These findings support that Maasai participants included in this study have typical patterns of CR in calcium and bone homeostasis consistent with findings from other ethnic populations.


Assuntos
Osso e Ossos , Cálcio , Ritmo Circadiano , Adulto , Albuminas , Biomarcadores , Osso e Ossos/fisiologia , Cálcio/fisiologia , Ritmo Circadiano/fisiologia , Creatinina , Etnicidade , Feminino , Homeostase , Humanos , Masculino , Osteocalcina , Hormônio Paratireóideo/fisiologia , Tanzânia
9.
Elife ; 112022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-35188099

RESUMO

Neuronal excitation imposes a high demand of ATP in neurons. Most of the ATP derives primarily from pyruvate-mediated oxidative phosphorylation, a process that relies on import of pyruvate into mitochondria occuring exclusively via the mitochondrial pyruvate carrier (MPC). To investigate whether deficient oxidative phosphorylation impacts neuron excitability, we generated a mouse strain carrying a conditional deletion of MPC1, an essential subunit of the MPC, specifically in adult glutamatergic neurons. We found that, despite decreased levels of oxidative phosphorylation and decreased mitochondrial membrane potential in these excitatory neurons, mice were normal at rest. Surprisingly, in response to mild inhibition of GABA mediated synaptic activity, they rapidly developed severe seizures and died, whereas under similar conditions the behavior of control mice remained unchanged. We report that neurons with a deficient MPC were intrinsically hyperexcitable as a consequence of impaired calcium homeostasis, which reduced M-type potassium channel activity. Provision of ketone bodies restored energy status, calcium homeostasis and M-channel activity and attenuated seizures in animals fed a ketogenic diet. Our results provide an explanation for the seizures that frequently accompany a large number of neuropathologies, including cerebral ischemia and diverse mitochondriopathies, in which neurons experience an energy deficit.


Assuntos
Proteínas de Transporte de Ânions/metabolismo , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Ácido Pirúvico/metabolismo , Ácido 3-Hidroxibutírico/farmacologia , Animais , Proteínas de Transporte de Ânions/genética , Transporte Biológico , Cálcio/fisiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Homeostase/fisiologia , Corpos Cetônicos , Camundongos , Camundongos Knockout , Proteínas de Transporte da Membrana Mitocondrial/genética , Transportadores de Ácidos Monocarboxílicos/genética , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Oxirredução , Pentilenotetrazol/toxicidade , Fosforilação , Convulsões/induzido quimicamente , Tamoxifeno/farmacologia
10.
Sci Rep ; 12(1): 2897, 2022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-35190581

RESUMO

Calcium regulates the response sensitivity, kinetics and adaptation in photoreceptors. In striped bass cones, this calcium feedback includes direct modulation of the transduction cyclic nucleotide-gated (CNG) channels by the calcium-binding protein CNG-modulin. However, the possible role of EML1, the mammalian homolog of CNG-modulin, in modulating phototransduction in mammalian photoreceptors has not been examined. Here, we used mice expressing mutant Eml1 to investigate its role in the development and function of mouse photoreceptors using immunostaining, in-vivo and ex-vivo retinal recordings, and single-cell suction recordings. We found that the mutation of Eml1 causes significant changes in the mouse retinal structure characterized by mislocalization of rods and cones in the inner retina. Consistent with the fraction of mislocalized photoreceptors, rod and cone-driven retina responses were reduced in the mutants. However, the Eml1 mutation had no effect on the dark-adapted responses of rods in the outer nuclear layer. Notably, we observed no changes in the cone sensitivity in the Eml1 mutant animals, either in darkness or during light adaptation, ruling out a role for EML1 in modulating cone CNG channels. Together, our results suggest that EML1 plays an important role in retina development but does not modulate phototransduction in mammalian rods and cones.


Assuntos
Movimento Celular/genética , Sobrevivência Celular/genética , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/fisiologia , Células Fotorreceptoras Retinianas Cones/fisiologia , Células Fotorreceptoras Retinianas Bastonetes/fisiologia , Animais , Cálcio/fisiologia , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Mutação , Retina/patologia , Células Fotorreceptoras Retinianas Cones/patologia , Células Fotorreceptoras Retinianas Bastonetes/patologia , Visão Ocular/genética
11.
Insect Mol Biol ; 31(3): 346-355, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35084070

RESUMO

The troponin (Tn) complex, the sensor for Ca2+ to regulate contraction of striated muscle, is composed of three subunits, that is, TnT, TnI and TnC. Different isoforms of TnI and TnC are expressed in the thorax dorsal longitudinal muscle (flight muscle) and the hind leg extensor tibiae muscle (jump muscle) of the migratory locust, Locusta migratoria. The major Tn complexes in the flight muscle and the jump muscle are Tn-171 (TnT1/TnI7/TnC1) and Tn-153 (TnT1/TnI5/TnC3), respectively. Here, we prepared a number of recombinant Tn complexes and the reconstituted thin filaments, and investigated their regulation on thin filament. Although both Tn-171 and Tn-153 regulate thin filament in a Ca2+ -dependent manner, the extent of Ca2+ activation mediated by Tn-171 was significantly lower than that by Tn-153. We demonstrated that TnC1 and TnC3, rather than TnI5 and TnI7, are responsible for the different levels of the thin filament activation. Mutagenesis of TnC1 and TnC3 shows that the low level of TnC1-mediated thin filament activation can be attributed to the noncanonical residue Leu60 in the EF-hand-II of TnC1. We therefore propose that, in addition to Ca2+ , other regulatory mechanism(s) is required for the full activation of locust flight muscle.


Assuntos
Locusta migratoria , Troponina , Citoesqueleto de Actina/química , Animais , Cálcio/análise , Cálcio/química , Cálcio/fisiologia , Locusta migratoria/genética , Contração Muscular/fisiologia , Músculo Esquelético/química , Músculo Esquelético/fisiologia , Troponina/química
12.
J Biomech Eng ; 144(1)2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34251438

RESUMO

Hill-type models are frequently used in biomechanical simulations. They are attractive for their low computational cost and close relation to commonly measured musculotendon parameters. Still, more attention is needed to improve the activation dynamics of the model specifically because of the nonlinearity observed in the electromyography (EMG)-force relation. Moreover, one of the important and practical questions regarding the assessment of the model's performance is how adequately can the model simulate any fundamental type of human movement without modifying model parameters for different tasks? This paper tries to answer this question by proposing a simple physiologically based activation dynamics model. The model describes the kinetics of the calcium dynamics while activating and deactivating the muscle contraction process. Hence, it allowed simulating the recently discovered role of store-operated calcium entry (SOCE) channels as immediate counterflux to calcium loss across the tubular system during excitation-contraction coupling. By comparing the ability to fit experimental data without readjusting the parameters, the proposed model has proven to have more steady performance than phenomenologically based models through different submaximal isometric contraction levels. This model indicates that more physiological insights are key for improving Hill-type model performance.


Assuntos
Cálcio , Músculo Esquelético , Cálcio/fisiologia , Eletromiografia , Humanos , Cinética , Modelos Biológicos , Músculo Esquelético/fisiologia
13.
Science ; 374(6565): eabh2858, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34648330

RESUMO

In the brain's gray matter, astrocytes regulate synapse properties, but their role is unclear for the white matter, where myelinated axons rapidly transmit information between gray matter areas. We found that in rodents, neuronal activity raised the intracellular calcium concentration ([Ca2+]i) in astrocyte processes located near action potential­generating sites in the axon initial segment (AIS) and nodes of Ranvier of myelinated axons. This released adenosine triphosphate, which was converted extracellularly to adenosine and thus, through A2a receptors, activated HCN2-containing cation channels that regulate two aspects of myelinated axon function: excitability of the AIS and speed of action potential propagation. Variations in astrocyte-derived adenosine level between wake and sleep states or during energy deprivation could thus control white matter information flow and neural circuit function.


Assuntos
Trifosfato de Adenosina/metabolismo , Astrócitos/fisiologia , Axônios/fisiologia , Cálcio/fisiologia , Excitabilidade Cortical , Condução Nervosa , Potenciais de Ação , Animais , Camundongos , Camundongos Transgênicos , Técnicas de Patch-Clamp , Ratos Sprague-Dawley
14.
Oxid Med Cell Longev ; 2021: 3154501, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34422207

RESUMO

Sick sinus syndrome (SSS) is a disease with bradycardia or arrhythmia. The pathological mechanism of SSS is mainly due to the abnormal conduction function of the sinoatrial node (SAN) caused by interstitial lesions or fibrosis of the SAN or surrounding tissues, SAN pacing dysfunction, and SAN impulse conduction accompanied by SAN fibrosis. Tongyang Huoxue Decoction (TYHX) is widely used in SSS treatment and amelioration of SAN fibrosis. It has a variety of active ingredients to regulate the redox balance and mitochondrial quality control. This study mainly discusses the mechanism of TYHX in ameliorating calcium homeostasis disorder and redox imbalance of sinoatrial node cells (SANCs) and clarifies the protective mechanism of TYHX on the activity of SANCs. The activity of SANCs was determined by CCK-8 and the TUNEL method. The levels of apoptosis, ROS, and calcium release were analyzed by flow cytometry and immunofluorescence. The mRNA and protein levels of calcium channel regulatory molecules and mitochondrial quality control-related molecules were detected by real-time quantitative PCR and Western Blot. The level of calcium release was detected by laser confocal. It was found that after H/R treatment, the viability of SANCs decreased significantly, the levels of apoptosis and ROS increased, and the cells showed calcium overload, redox imbalance, and mitochondrial dysfunction. After treatment with TYHX, the cell survival level was improved, calcium overload and oxidative stress were inhibited, and mitochondrial energy metabolism and mitochondrial function were restored. However, after the SANCs were treated with siRNA (si-ß-tubulin), the regulation of TYHX on calcium homeostasis and redox balance was counteracted. These results suggest that ß-tubulin interacts with the regulation of mitochondrial function and calcium release. TYHX may regulate mitochondrial quality control, maintain calcium homeostasis and redox balance, and protect SANCs through ß-tubulin. The regulation mechanism of TYHX on mitochondrial quality control may also become a new target for SSS treatment.


Assuntos
Cálcio/fisiologia , Medicamentos de Ervas Chinesas/farmacologia , Hipóxia/fisiopatologia , Mitocôndrias/efeitos dos fármacos , Oxigênio/metabolismo , Nó Sinoatrial/efeitos dos fármacos , Animais , Sinalização do Cálcio , Homeostase , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Oxirredução , Coelhos , Nó Sinoatrial/metabolismo , Nó Sinoatrial/patologia
15.
Front Immunol ; 12: 691590, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34349758

RESUMO

Multiple sclerosis (MS) is a chronic disease in the central nervous system (CNS), characterized by inflammatory cells that invade into the brain and the spinal cord. Among a bulk of different MS models, the most widely used and best understood rodent model is experimental autoimmune encephalomyelitis (EAE). Arctigenin, a botanical extract from Arctium lappa, is reported to exhibit pharmacological properties, including anti-inflammation and neuroprotection. However, the effects of arctigenin on neural activity attacked by inflammation in MS are still unclear. Here, we use two-photon calcium imaging to observe the activity of somatosensory cortex neurons in awake EAE mice in vivo and found added hyperactive cells, calcium influx, network connectivity, and synchronization, mainly at preclinical stage of EAE model. Besides, more silent cells and decreased calcium influx and reduced network synchronization accompanied by a compensatory rise in functional connectivity are found at the remission stage. Arctigenin treatment not only restricts inordinate individually neural spiking, calcium influx, and network activity at preclinical stage but also restores neuronal activity and communication at remission stage. In addition, we confirm that the frequency of AMPA receptor-mediated spontaneous excitatory postsynaptic current (sEPSC) is also increased at preclinical stage and can be blunted by arctigenin. These findings suggest that excitotoxicity characterized by calcium influx is involved in EAE at preclinical stage. What is more, arctigenin exerts neuroprotective effect by limiting hyperactivity at preclinical stage and ameliorates EAE symptoms, indicating that arctigenin could be a potential therapeutic drug for neuroprotection in MS-related neuropsychological disorders.


Assuntos
Encefalomielite Autoimune Experimental/tratamento farmacológico , Furanos/uso terapêutico , Lignanas/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Animais , Cálcio/fisiologia , Encefalomielite Autoimune Experimental/fisiopatologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Feminino , Furanos/farmacologia , Lignanas/farmacologia , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Fármacos Neuroprotetores/farmacologia , Córtex Somatossensorial/efeitos dos fármacos , Córtex Somatossensorial/fisiologia
17.
Physiol Rep ; 9(13): e14921, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34245114

RESUMO

It is an open question as to whether cooling-induced muscle contraction occurs in the in vivo environment. In this investigation, we tested the hypotheses that a rise in intracellular Ca²âº concentration ([Ca²âº]i) and concomitant muscle contraction could be evoked in vivo by reducing muscle temperature and that this phenomenon would be facilitated or inhibited by specific pharmacological interventions designed to impact Ca²âº-induced Ca²âº-release (CICR). Progressive temperature reductions were imposed on the spinotrapezius muscle of Wistar rats under isoflurane anesthesia by means of cold fluid immersion. The magnitude, location, and temporal profile of [Ca²âº]i were estimated using fura-2 loading. Caffeine (1.25-5.0 mM) and procaine (1.6-25.6 mM) loading were applied in separatum to evaluate response plasticity by promoting or inhibiting CICR, respectively. Lowering the temperature of the muscle surface to ~5°C produced active tension and discrete sites with elevated [Ca²âº]i. This [Ca²âº]i elevation differed in magnitude from fiber to fiber and also from site to site within a fiber. Caffeine at 1.25 and 5.0 mM reduced the magnitude of cooling necessary to elevate [Ca²âº]i (i.e., from ~5°C to ~8 and ~16°C, respectively, both p < 0.05) and tension. Conversely, 25.6 mM procaine lowered the temperature at which [Ca²âº]i elevation and tension were detected to ~2°C (p < 0.05). Herein we demonstrate the spatial and temporal relationship between cooling-induced [Ca²âº]i elevation and muscle contractile force in vivo and the plasticity of these responses with CICR promotion and inhibition.


Assuntos
Temperatura Corporal , Cálcio/análise , Músculo Esquelético/química , Animais , Temperatura Corporal/fisiologia , Cafeína/farmacologia , Cálcio/metabolismo , Cálcio/fisiologia , Masculino , Contração Muscular/efeitos dos fármacos , Contração Muscular/fisiologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Procaína/farmacologia , Ratos , Ratos Wistar
18.
J Neurosci ; 41(35): 7340-7349, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34290083

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disease marked by the accumulation of amyloid-ß (Aß) plaques and neurofibrillary tangles. Aß oligomers cause synaptic dysfunction early in AD by enhancing long-term depression (LTD; a paradigm for forgetfulness) via metabotropic glutamate receptor (mGluR)-dependent regulation of striatal-enriched tyrosine phosphatase (STEP61). Reelin is a neuromodulator that signals through ApoE (apolipoprotein E) receptors to protect the synapse against Aß toxicity (Durakoglugil et al., 2009) Reelin signaling is impaired by ApoE4, the most important genetic risk factor for AD, and Aß-oligomers activate metabotropic glutamate receptors (Renner et al., 2010). We therefore asked whether Reelin might also affect mGluR-LTD. To this end, we induced chemical mGluR-LTD using DHPG (Dihydroxyphenylglycine), a selective mGluR5 agonist. We found that exogenous Reelin reduces the DHPG-induced increase in STEP61, prevents the dephosphorylation of GluA2, and concomitantly blocks mGluR-mediated LTD. By contrast, Reelin deficiency increased expression of Ca2+-permeable GluA2-lacking AMPA receptors along with higher STEP61 levels, resulting in occlusion of DHPG-induced LTD in hippocampal CA1 neurons. We propose a model in which Reelin modulates local protein synthesis as well as AMPA receptor subunit composition through modulation of mGluR-mediated signaling with implications for memory consolidation or neurodegeneration.SIGNIFICANCE STATEMENT Reelin is an important neuromodulator, which in the adult brain controls synaptic plasticity and protects against neurodegeneration. Amyloid-ß has been shown to use mGluRs to induce synaptic depression through endocytosis of NMDA and AMPA receptors, a mechanism referred to as LTD, a paradigm of forgetfulness. Our results show that Reelin regulates the phosphatase STEP, which plays an important role in neurodegeneration, as well as the expression of calcium-permeable AMPA receptors, which play a role in memory formation. These data suggest that Reelin uses mGluR LTD pathways to regulate memory formation as well as neurodegeneration.


Assuntos
Depressão Sináptica de Longo Prazo/fisiologia , Neurônios/fisiologia , Proteínas Tirosina Fosfatases não Receptoras/fisiologia , Receptores de Glutamato Metabotrópico/fisiologia , Proteína Reelina/fisiologia , 2-Amino-5-fosfonovalerato/farmacologia , Animais , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/efeitos dos fármacos , Cálcio/fisiologia , Células Cultivadas , Córtex Cerebral/citologia , Indução Enzimática/efeitos dos fármacos , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Memória/fisiologia , Metoxi-Hidroxifenilglicol/análogos & derivados , Metoxi-Hidroxifenilglicol/farmacologia , Camundongos , Degeneração Neural/fisiopatologia , Neurônios/efeitos dos fármacos , Técnicas de Patch-Clamp , Fosforilação/efeitos dos fármacos , Picrotoxina/farmacologia , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptores de AMPA/metabolismo , Receptores de Glutamato Metabotrópico/agonistas , Proteínas Recombinantes/metabolismo , Proteína Reelina/deficiência , Proteína Reelina/genética
19.
Elife ; 102021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34190043

RESUMO

The expression of motivated behaviors depends on both external and internally arising neural stimuli, yet the intrinsic releasing mechanisms for such variably occurring behaviors remain elusive. In isolated nervous system preparations of Aplysia, we have found that irregularly expressed cycles of motor output underlying food-seeking behavior arise from regular membrane potential oscillations of varying magnitude in an identified pair of interneurons (B63) in the bilateral buccal ganglia. This rhythmic signal, which is specific to the B63 cells, is generated by organelle-derived intracellular calcium fluxes that activate voltage-independent plasma membrane channels. The resulting voltage oscillation spreads throughout a subset of gap junction-coupled buccal network neurons and by triggering plateau potential-mediated bursts in B63, can initiate motor output driving food-seeking action. Thus, an atypical neuronal pacemaker mechanism, based on rhythmic intracellular calcium store release and intercellular propagation, can act as an autonomous intrinsic releaser for the occurrence of a motivated behavior.


Assuntos
Aplysia/fisiologia , Cálcio/fisiologia , Gânglios dos Invertebrados/fisiologia , Potenciais da Membrana/fisiologia , Organelas/fisiologia , Animais , Interneurônios/fisiologia
20.
Physiol Rev ; 101(4): 1691-1744, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33949875

RESUMO

This review deals with the roles of calcium ions and ATP in the control of the normal functions of the different cell types in the exocrine pancreas as well as the roles of these molecules in the pathophysiology of acute pancreatitis. Repetitive rises in the local cytosolic calcium ion concentration in the apical part of the acinar cells not only activate exocytosis but also, via an increase in the intramitochondrial calcium ion concentration, stimulate the ATP formation that is needed to fuel the energy-requiring secretion process. However, intracellular calcium overload, resulting in a global sustained elevation of the cytosolic calcium ion concentration, has the opposite effect of decreasing mitochondrial ATP production, and this initiates processes that lead to necrosis. In the last few years it has become possible to image calcium signaling events simultaneously in acinar, stellate, and immune cells in intact lobules of the exocrine pancreas. This has disclosed processes by which these cells interact with each other, particularly in relation to the initiation and development of acute pancreatitis. By unraveling the molecular mechanisms underlying this disease, several promising therapeutic intervention sites have been identified. This provides hope that we may soon be able to effectively treat this often fatal disease.


Assuntos
Trifosfato de Adenosina/fisiologia , Cálcio/fisiologia , Pâncreas Exócrino/fisiologia , Pancreatopatias/fisiopatologia , Animais , Sinalização do Cálcio , Humanos , Pâncreas Exócrino/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...